Compare commits
5 commits
Author | SHA1 | Date | |
---|---|---|---|
cba01d2519 | |||
c8e051a4a3 | |||
a4a4ba249e | |||
eaf8314a68 | |||
29283ede63 |
13 changed files with 630 additions and 356 deletions
|
@ -1,4 +1,4 @@
|
|||
#pragma once
|
||||
|
||||
#include <Amuencha/AmuenchaModel.hpp>
|
||||
#include <Amuencha/AmuenchaUi.hpp>
|
||||
#include <Amuencha/AmuenchaUi.hpp>
|
||||
|
|
|
@ -1,249 +1,24 @@
|
|||
#include "Amuencha.hpp"
|
||||
#include "sse_mathfun.h"
|
||||
|
||||
#include <boost/math/constants/constants.hpp>
|
||||
#include <boost/math/special_functions/bessel.hpp>
|
||||
|
||||
#include <sys/stat.h>
|
||||
#include <iostream>
|
||||
#include <fstream>
|
||||
|
||||
namespace Amuencha
|
||||
{
|
||||
void Analyser::prepare(halp::setup info)
|
||||
void Model::prepare(setup info)
|
||||
{
|
||||
sampling_rate = info.rate;
|
||||
samplerate_div_2pi = sampling_rate/two_pi;
|
||||
if (analyzer.isRunning()) return;
|
||||
|
||||
analyzer.setup(info.rate,
|
||||
[&] (const std::vector<float>& r_f,
|
||||
const std::vector<float>& p_s)
|
||||
{
|
||||
this->send_message({.reassigned_frequencies = r_f,
|
||||
.power_spectrum = p_s});
|
||||
});
|
||||
|
||||
analyzer.start(QThread::NormalPriority);
|
||||
}
|
||||
|
||||
void Analyser::operator()(halp::tick t)
|
||||
void Model::operator()(tick t)
|
||||
{
|
||||
using namespace std;
|
||||
|
||||
if (chunks.empty())
|
||||
chunks.emplace_back(make_pair(inputs.audio[0], t.frames));
|
||||
else
|
||||
chunks[0] = make_pair(inputs.audio[0], t.frames);
|
||||
|
||||
int new_data_size = 0;
|
||||
for (auto c: chunks) new_data_size += c.second;
|
||||
// shift the old data to make room for the new
|
||||
int new_data_pos = big_buffer.size() - new_data_size;
|
||||
//cout << "data " << new_data_size << " " << big_buffer.size() << endl;
|
||||
// std::copy can cope with overlapping regions in this copy direction
|
||||
if (new_data_pos > 0)
|
||||
copy(big_buffer.begin() + new_data_size,
|
||||
big_buffer.end(),
|
||||
big_buffer.begin());
|
||||
// now copy each chunk at its position in the big buffer
|
||||
for (auto c: chunks)
|
||||
{
|
||||
if (new_data_pos < 0)
|
||||
{
|
||||
// discard too old chunks
|
||||
if (c.second <= -new_data_pos)
|
||||
{
|
||||
new_data_pos += c.second;
|
||||
continue;
|
||||
}
|
||||
// partial copy of chunks that fall on the edge
|
||||
copy(c.first + new_data_pos, c.first + c.second, &big_buffer[0]);
|
||||
new_data_pos = c.second + new_data_pos;
|
||||
continue;
|
||||
}
|
||||
|
||||
copy(c.first, c.first + c.second, &big_buffer[new_data_pos]);
|
||||
new_data_pos += c.second;
|
||||
}
|
||||
|
||||
// Apply the filter bank
|
||||
float *bbend = &big_buffer[0] + big_buffer.size();
|
||||
for (int idx{0}; idx < frequencies.size(); ++idx)
|
||||
{
|
||||
const auto& ws = windowed_sines[idx];
|
||||
int wsize = ws.size();
|
||||
float* sig = bbend - wsize;
|
||||
v4sf acc = {0.f, 0.f, 0.f, 0.f};
|
||||
for (int i{0}; i < wsize; ++i) acc += ws[i] * sig[i];
|
||||
float norm = acc[0] * acc[0] + acc[1]*acc[1];
|
||||
float reassign = frequencies[idx];
|
||||
if (norm > 0)
|
||||
reassign -= (acc[0] * acc[3] - acc[1] * acc[2]) * samplerate_div_2pi / norm;
|
||||
|
||||
reassigned_frequencies[idx] = reassign;
|
||||
power_spectrum[idx] = norm * power_normalization_factors[idx];
|
||||
}
|
||||
|
||||
send_message({.min = inputs.min,
|
||||
.max = inputs.max,
|
||||
.reassigned_frequencies = this->reassigned_frequencies,
|
||||
.power_spectrum = this->power_spectrum});
|
||||
}
|
||||
|
||||
void Analyser::analyzer_setup(float max_buffer_duration)
|
||||
{
|
||||
using namespace boost::math::float_constants;
|
||||
using namespace std;
|
||||
|
||||
// Prepare the windows
|
||||
//std::vector<std::vector<v4sf>> windowed_sines;
|
||||
windowed_sines.resize(frequencies.size());
|
||||
power_normalization_factors.resize(frequencies.size());
|
||||
|
||||
int big_buffer_size = 0;
|
||||
|
||||
for (int idx{0}; idx < frequencies.size(); ++idx)
|
||||
{
|
||||
// for each freq, span at least 20 periods for more precise measurements
|
||||
// This still gives reasonable latencies, e.g. 50ms at 400Hz, 100ms at 200Hz, 400ms at 50Hz...
|
||||
// Could also span more for even better measurements, with larger
|
||||
// computation cost and latency
|
||||
float f = frequencies[idx];
|
||||
int window_size = (int)(min(inputs.periods / f, max_buffer_duration * 0.001f)
|
||||
* sampling_rate);
|
||||
|
||||
vector<float> window(window_size);
|
||||
vector<float> window_deriv(window_size);
|
||||
|
||||
if (!read_from_cache(window, window_deriv))
|
||||
{
|
||||
initialize_window(window);
|
||||
initialize_window_deriv(window_deriv);
|
||||
write_to_cache(window, window_deriv);
|
||||
}
|
||||
windowed_sines[idx].resize(window_size);
|
||||
float wsum = 0;
|
||||
|
||||
for (int i{0}; i < window_size;)
|
||||
{
|
||||
if (i < window_size - 4)
|
||||
{
|
||||
v4sf tfs = {
|
||||
(float)(i - window_size - 1) / sampling_rate,
|
||||
(float)(i + 1 - window_size - 1) / sampling_rate,
|
||||
(float)(i + 2 - window_size - 1) / sampling_rate,
|
||||
(float)(i + 3 - window_size - 1) / sampling_rate
|
||||
};
|
||||
tfs *= (float)(-two_pi*f);
|
||||
v4sf sin_tf, cos_tf;
|
||||
sincos_ps(tfs, &sin_tf, &cos_tf);
|
||||
|
||||
for (int j{0}; j < 3; ++j)
|
||||
{
|
||||
v4sf ws = {
|
||||
cos_tf[j] * window[i + j],
|
||||
sin_tf[j] * window[i + j],
|
||||
cos_tf[j] * window_deriv[i + j],
|
||||
sin_tf[j] * window_deriv[i + j]
|
||||
};
|
||||
windowed_sines[idx][i + j] = ws;
|
||||
wsum += window[i + j];
|
||||
}
|
||||
i += 4;
|
||||
continue;
|
||||
}
|
||||
float t = (float)(i - window_size - 1) / sampling_rate;
|
||||
float re = cosf(-two_pi * t * f);
|
||||
float im = sinf(-two_pi * t * f);
|
||||
v4sf ws = {
|
||||
re * window[i],
|
||||
im * window[i],
|
||||
re * window_deriv[i],
|
||||
im * window_deriv[i]
|
||||
};
|
||||
windowed_sines[idx][i] = ws;
|
||||
wsum += window[i];
|
||||
++i;
|
||||
}
|
||||
power_normalization_factors[idx] = 1. / (wsum * wsum);
|
||||
big_buffer_size = max(big_buffer_size, window_size);
|
||||
}
|
||||
|
||||
big_buffer.clear();
|
||||
// fill with 0 signal content to start with
|
||||
big_buffer.resize(big_buffer_size, 0.f);
|
||||
}
|
||||
|
||||
void Analyser::initialize_window(std::vector<float>& window)
|
||||
{
|
||||
// Kaiser window with a parameter of alpha=3 that nullifies the window on edges
|
||||
int size = window.size();
|
||||
const float two_over_N = 2. / size;
|
||||
const float alpha = 3.;
|
||||
const float alpha_pi = alpha * pi;
|
||||
const float inv_denom = 1. / boost::math::cyl_bessel_i(0., alpha_pi);
|
||||
for (int i{0}; i < size; ++i)
|
||||
{
|
||||
float p = i * two_over_N - 1.;
|
||||
window[i] = boost::math::cyl_bessel_i(0., alpha_pi * sqrt(1. - p * p)) * inv_denom;
|
||||
}
|
||||
}
|
||||
|
||||
void Analyser::initialize_window_deriv(std::vector<float>& window)
|
||||
{
|
||||
// Derivative of the Kaiser window with a parameter of alpha=3 that nullifies the window on edges
|
||||
int size = window.size();
|
||||
const float two_over_N = 2. / size;
|
||||
const float alpha = 3.;
|
||||
const float alpha_pi = alpha * pi;
|
||||
const float inv_denom = 1. / boost::math::cyl_bessel_i(0., alpha_pi);
|
||||
for (int i{1}; i < size; ++i)
|
||||
{
|
||||
float p = i * two_over_N - 1.;
|
||||
window[i] = boost::math::cyl_bessel_i(1., alpha_pi * sqrt(1. - p * p)) *
|
||||
inv_denom * alpha_pi / sqrt(1. - p * p) * (-p) * two_over_N;
|
||||
}
|
||||
// lim I1(x)/x as x->0 = 1/2
|
||||
window[0] = 0.5 * inv_denom * alpha_pi * alpha_pi * two_over_N;
|
||||
}
|
||||
|
||||
bool Analyser::read_from_cache(std::vector<float> &window, std::vector<float> &window_deriv)
|
||||
{
|
||||
auto it = mem_win_cache.find(window.size());
|
||||
|
||||
if (it != mem_win_cache.end())
|
||||
{
|
||||
window = it->second;
|
||||
auto itd = mem_winderiv_cache.find(window.size());
|
||||
|
||||
if (itd != mem_winderiv_cache.end())
|
||||
{
|
||||
window_deriv = itd->second;
|
||||
return true;
|
||||
}
|
||||
// else, load from disk
|
||||
}
|
||||
|
||||
using namespace std;
|
||||
// TODO: make the cache location parametrizable (and an option to not use it)
|
||||
ifstream file(".amuencha_cache/w"+to_string(window.size())+".bin", ios::binary);
|
||||
if (file.is_open())
|
||||
{
|
||||
file.read(reinterpret_cast<char*>(&window[0]), window.size()*sizeof(float));
|
||||
file.read(reinterpret_cast<char*>(&window_deriv[0]), window_deriv.size()*sizeof(float));
|
||||
|
||||
if (file.tellg() != (window.size() + window_deriv.size()) * sizeof(float))
|
||||
{
|
||||
cerr << "Error: invalid cache .amuencha_cache/w"+to_string(window.size())+".bin\n";
|
||||
return false;
|
||||
}
|
||||
return true;
|
||||
}
|
||||
return false;
|
||||
}
|
||||
|
||||
void Analyser::write_to_cache(std::vector<float> &window, std::vector<float> &window_deriv)
|
||||
{
|
||||
using namespace std;
|
||||
#if defined(_WIN32) || defined(_WIN64)
|
||||
mkdir(".amuencha_cache");
|
||||
#else
|
||||
mkdir(".amuencha_cache", 0755);
|
||||
#endif
|
||||
ofstream file(".amuencha_cache/w"+to_string(window.size())+".bin", ios::binary|ios::trunc);
|
||||
file.write(reinterpret_cast<char*>(&window[0]), window.size()*sizeof(float));
|
||||
file.write(reinterpret_cast<char*>(&window_deriv[0]), window_deriv.size()*sizeof(float));
|
||||
mem_win_cache[window.size()] = window;
|
||||
mem_winderiv_cache[window.size()] = window_deriv;
|
||||
analyzer.new_data(inputs.audio[0], t.frames);
|
||||
}
|
||||
}
|
||||
|
|
|
@ -5,9 +5,11 @@
|
|||
#include <halp/controls.hpp>
|
||||
#include <halp/meta.hpp>
|
||||
|
||||
#include "FrequencyAnalyzer.hpp"
|
||||
|
||||
namespace Amuencha
|
||||
{
|
||||
class Analyser
|
||||
class Model
|
||||
{
|
||||
public:
|
||||
halp_meta(name, "Amuencha")
|
||||
|
@ -15,11 +17,8 @@ public:
|
|||
halp_meta(c_name, "amuencha")
|
||||
halp_meta(uuid, "b37351b4-7b8d-4150-9e1c-708eec9182b2")
|
||||
|
||||
// This one will be memcpy'd as it is a trivial type
|
||||
struct processor_to_ui
|
||||
{
|
||||
int min;
|
||||
int max;
|
||||
std::vector<float> reassigned_frequencies;
|
||||
std::vector<float> power_spectrum;
|
||||
};
|
||||
|
@ -31,84 +30,29 @@ public:
|
|||
struct ins
|
||||
{
|
||||
halp::fixed_audio_bus<"Input", float, 1> audio;
|
||||
struct : halp::hslider_i32<"Min", halp::range{.min = 0, .max = 127, .init = 24}>
|
||||
{
|
||||
void update(Analyser& self)
|
||||
{
|
||||
self.send_message({.min = this->value, .max = self.inputs.max.value});
|
||||
}
|
||||
} min;
|
||||
struct : halp::hslider_i32<"Min", halp::range{.min = 0, .max = 127, .init = 72}>
|
||||
{
|
||||
void update(Analyser& self)
|
||||
{
|
||||
self.send_message({.min = self.inputs.min.value, .max = this->value});
|
||||
}
|
||||
} max;
|
||||
halp::spinbox_i32<"Periods",
|
||||
halp::range{.min = 0, .max = 99, .init = 30}> periods;
|
||||
halp::hslider_i32<"Min", halp::range{.min = 0, .max = 127, .init = 24}> min;
|
||||
halp::hslider_i32<"Max", halp::range{.min = 0, .max = 127, .init = 72}> max;
|
||||
halp::spinbox_i32<"Periods", halp::range{.min = 0, .max = 99, .init = 30}> periods;
|
||||
} inputs;
|
||||
|
||||
void process_message(const std::vector<float>& frequencies)
|
||||
{
|
||||
this->frequencies = frequencies;
|
||||
reassigned_frequencies = frequencies;
|
||||
power_spectrum.resize(frequencies.size());
|
||||
analyzer_setup();
|
||||
}
|
||||
|
||||
struct outs
|
||||
{
|
||||
halp::midi_bus<"Output"> midi;
|
||||
} outputs;
|
||||
|
||||
using setup = halp::setup;
|
||||
void prepare(halp::setup info);
|
||||
void prepare(setup info);
|
||||
|
||||
// Do our processing for N samples
|
||||
using tick = halp::tick;
|
||||
|
||||
// Defined in the .cpp
|
||||
void operator()(halp::tick t);
|
||||
void operator()(tick t);
|
||||
|
||||
// UI is defined in another file to keep things clear.
|
||||
struct ui;
|
||||
|
||||
// max_buffer_duration in milliseconds, specifies the largest buffer for computing the frequency content
|
||||
// At lower frequencies, long buffers are needed for accurate frequency separation.
|
||||
// When that max buffer duration is reached, then it is capped and the frequency resolution decreases
|
||||
// Too low buffers also limit the min_freq, duration must be >= period
|
||||
void analyzer_setup(float max_buffer_duration = 500);
|
||||
|
||||
private:
|
||||
// new data chunks arrived since the last periodic processing
|
||||
std::vector<std::pair<float*,int>> chunks;
|
||||
|
||||
// The window is the usual Kaiser with alpha=3
|
||||
static void initialize_window(std::vector<float>& window);
|
||||
static void initialize_window_deriv(std::vector<float>& window);
|
||||
// The filter bank. One filter per frequency
|
||||
// The 4 entries in the v4sf are the real, imaginary parts of the windowed
|
||||
// sine wavelet, and the real, imaginary parts of the derived windowed sine
|
||||
// used for reassigning the power spectrum.
|
||||
// Hopefully, with SIMD, computing all 4 of them is the same price as just one
|
||||
// TODO: v8sf and compute 2 freqs at the same time
|
||||
typedef float v4sf __attribute__ ((vector_size (16)));
|
||||
std::vector<std::vector<v4sf>> windowed_sines;
|
||||
std::vector<float> frequencies;
|
||||
std::vector<float> power_normalization_factors;
|
||||
float sampling_rate;
|
||||
float samplerate_div_2pi;
|
||||
std::vector<float> big_buffer;
|
||||
std::vector<float> reassigned_frequencies;
|
||||
std::vector<float> power_spectrum;
|
||||
|
||||
// caching computations for faster init
|
||||
// on disk for persistence between executions,
|
||||
// in memory for avoiding reloading from disk when changing the spiral size
|
||||
bool read_from_cache(std::vector<float>& window, std::vector<float>& window_deriv);
|
||||
void write_to_cache(std::vector<float>& window, std::vector<float>& window_deriv);
|
||||
std::map<int, std::vector<float>> mem_win_cache, mem_winderiv_cache;
|
||||
FrequencyAnalyzer analyzer;
|
||||
};
|
||||
|
||||
}
|
||||
|
|
|
@ -1,12 +1,14 @@
|
|||
#pragma once
|
||||
|
||||
#include <Amuencha/AmuenchaModel.hpp>
|
||||
#include <halp/layout.hpp>
|
||||
|
||||
#include <Amuencha/AmuenchaModel.hpp>
|
||||
#include "SpiralDisplay.hpp"
|
||||
#include "CustomSlider.hpp"
|
||||
|
||||
namespace Amuencha
|
||||
{
|
||||
struct Analyser::ui
|
||||
struct Model::ui
|
||||
{
|
||||
using enum halp::colors;
|
||||
using enum halp::layouts;
|
||||
|
@ -18,33 +20,32 @@ struct Analyser::ui
|
|||
struct
|
||||
{
|
||||
halp_meta(layout, vbox)
|
||||
halp::item<&ins::min> min;
|
||||
halp::item<&ins::max> max;
|
||||
halp::custom_control<CustomSlider, &ins::min> min;
|
||||
halp::custom_control<CustomSlider, &ins::max> max;
|
||||
halp::item<&ins::periods> periods;
|
||||
} controls;
|
||||
|
||||
halp::custom_actions_item<SpiralDisplay> spiral{.x = 0, .y = 0};
|
||||
|
||||
|
||||
// Define the communication between UI and processor.
|
||||
struct bus
|
||||
{
|
||||
std::function<void(const std::vector<float>&)> send_message;
|
||||
|
||||
// Set up connections
|
||||
void init(ui& self)
|
||||
{
|
||||
self.spiral.on_new_frequencies = [&]
|
||||
self.controls.min.on_changed = [&] (int min)
|
||||
{
|
||||
send_message(self.spiral.get_frequencies());
|
||||
self.spiral.set_min_max_notes(min, self.controls.max.value);
|
||||
};
|
||||
self.controls.max.on_changed = [&] (int max)
|
||||
{
|
||||
self.spiral.set_min_max_notes(self.controls.min.value, max);
|
||||
};
|
||||
}
|
||||
|
||||
// Receive a message on the UI thread from the processing thread
|
||||
static void process_message(ui& self, const processor_to_ui& msg)
|
||||
{
|
||||
self.spiral.set_min_max_notes(msg.min, msg.max);
|
||||
|
||||
if (msg.power_spectrum.empty() ||
|
||||
msg.reassigned_frequencies.empty())
|
||||
return;
|
||||
|
|
2
Amuencha/CustomSlider.cpp
Normal file
2
Amuencha/CustomSlider.cpp
Normal file
|
@ -0,0 +1,2 @@
|
|||
#include "CustomSlider.hpp"
|
||||
|
74
Amuencha/CustomSlider.hpp
Normal file
74
Amuencha/CustomSlider.hpp
Normal file
|
@ -0,0 +1,74 @@
|
|||
#pragma once
|
||||
|
||||
#include <halp/custom_widgets.hpp>
|
||||
#include <avnd/wrappers/controls.hpp>
|
||||
#include <avnd/concepts/painter.hpp>
|
||||
|
||||
struct CustomSlider
|
||||
{
|
||||
// Same as above
|
||||
static constexpr double width() { return 100.; }
|
||||
static constexpr double height() { return 20.; }
|
||||
|
||||
// Needed for changing the ui. It's the type above - it's already defined as-is
|
||||
// in the helpers library.
|
||||
halp::transaction<int> transaction;
|
||||
|
||||
// Called when the value changes from the host software.
|
||||
void set_value(const auto& control, int value)
|
||||
{
|
||||
this->value = avnd::map_control_to_01(control, value / 127.f);
|
||||
}
|
||||
|
||||
// When transaction.update() is called, this converts the value in the slider
|
||||
// into one fit for the control definition passed as argument.
|
||||
static auto value_to_control(auto& control, int value)
|
||||
{
|
||||
return avnd::map_control_from_01(control, value / 127.f);
|
||||
}
|
||||
|
||||
// Paint method: same as above
|
||||
void paint(avnd::painter auto ctx)
|
||||
{
|
||||
ctx.set_stroke_color({200, 200, 200, 255});
|
||||
ctx.set_stroke_width(2.);
|
||||
ctx.set_fill_color({120, 120, 120, 255});
|
||||
ctx.begin_path();
|
||||
ctx.draw_rect(0., 0., width(), height());
|
||||
ctx.fill();
|
||||
ctx.stroke();
|
||||
|
||||
ctx.begin_path();
|
||||
ctx.set_fill_color({90, 90, 90, 255});
|
||||
ctx.draw_rect(2., 2., (width() - 4) * (value / 127.f), (height() - 4));
|
||||
ctx.fill();
|
||||
}
|
||||
|
||||
// Return true to handle the event. x, y, are the positions of the item in local coordinates.
|
||||
bool mouse_press(double x, double y)
|
||||
{
|
||||
transaction.start();
|
||||
mouse_move(x, y);
|
||||
return true;
|
||||
}
|
||||
|
||||
// Obvious :-)
|
||||
void mouse_move(double x, double y)
|
||||
{
|
||||
const int res{static_cast<int>(std::clamp(x / width(), 0., 1.) * 127)};
|
||||
transaction.update(res);
|
||||
on_changed(value);
|
||||
}
|
||||
|
||||
// Same
|
||||
void mouse_release(double x, double y)
|
||||
{
|
||||
mouse_move(x, y);
|
||||
transaction.commit();
|
||||
}
|
||||
|
||||
int value{};
|
||||
|
||||
std::function<void(int)> on_changed{[](int){}};
|
||||
};
|
||||
|
367
Amuencha/FrequencyAnalyzer.cpp
Normal file
367
Amuencha/FrequencyAnalyzer.cpp
Normal file
|
@ -0,0 +1,367 @@
|
|||
/*
|
||||
Analyseur de MUsique et ENtraînement au CHAnt
|
||||
|
||||
This file is released under either of the two licenses below, your choice:
|
||||
- LGPL v2.1 or later, https://www.gnu.org
|
||||
The GNU Lesser General Public Licence, version 2.1 or,
|
||||
at your option, any later version.
|
||||
- CeCILL-C, http://www.cecill.info
|
||||
The CeCILL-C license is more adapted to the French laws,
|
||||
but can be converted to the GNU LGPL.
|
||||
|
||||
You can use, modify and/or redistribute the software under the terms of any
|
||||
of these licences, which should have been provided to you together with this
|
||||
sofware. If that is not the case, you can find a copy of the licences on
|
||||
the indicated web sites.
|
||||
|
||||
By Nicolas . Brodu @ Inria . fr
|
||||
|
||||
See http://nicolas.brodu.net/programmation/amuencha/ for more information
|
||||
*/
|
||||
|
||||
#include <iostream>
|
||||
#include <fstream>
|
||||
|
||||
#include <algorithm>
|
||||
#include <cmath>
|
||||
|
||||
#include <boost/math/special_functions/bessel.hpp>
|
||||
#include <boost/math/constants/constants.hpp>
|
||||
|
||||
#include <sys/stat.h>
|
||||
|
||||
#include "sse_mathfun.h"
|
||||
|
||||
#include "FrequencyAnalyzer.hpp"
|
||||
|
||||
using namespace std;
|
||||
using namespace boost::math::float_constants;
|
||||
|
||||
Amuencha::FrequencyAnalyzer::FrequencyAnalyzer(QObject *parent) : QThread(parent)
|
||||
{
|
||||
status = NO_DATA;
|
||||
}
|
||||
|
||||
Amuencha::FrequencyAnalyzer::~FrequencyAnalyzer()
|
||||
{
|
||||
mutex.lock();
|
||||
status = QUIT_NOW;
|
||||
// Do not even wait the end of a cycle, quit
|
||||
condition.wakeOne();
|
||||
mutex.unlock();
|
||||
wait(CYCLE_PERIOD*2);
|
||||
terminate();
|
||||
wait(); // until run terminates
|
||||
}
|
||||
|
||||
void Amuencha::FrequencyAnalyzer::new_data(float* chunk, int size)
|
||||
{
|
||||
// producer, called from another thread.
|
||||
// Must not wake the main thread uselessly to notify that new data is available
|
||||
// The idea is that the new_data may be called very fast from a RT audio thread
|
||||
// but that frequencies are computed at most 10 times/second (or whatever the cyclic period is set)
|
||||
// => decouple thread frequencies
|
||||
// And when no data is here (recording off, no song...), the main thread is fully passive (no CPU hog)
|
||||
|
||||
mutex.lock();
|
||||
|
||||
// Store a pointer here and not a full data copy, which is much faster
|
||||
// The real data is stored in the AudioRecording object
|
||||
// Kind of duplicates the AudioRecording list, however:
|
||||
// - This way, there is no need for mutex/lock in the AudioRecording structure
|
||||
// - The position of the last unprocessed chunk within that structure need not be stored there
|
||||
chunks.emplace_back(make_pair(chunk, size));
|
||||
|
||||
// set the flag that data has arrived
|
||||
status = HAS_NEW_DATA;
|
||||
|
||||
// IF AND ONLY IF the thread was blocked forever, then wake it up
|
||||
if (waiting_time != CYCLE_PERIOD) {
|
||||
// and now resume the cyclic scheduling
|
||||
waiting_time = CYCLE_PERIOD;
|
||||
condition.wakeOne();
|
||||
}
|
||||
|
||||
// Otherwise, do NOT wake the other thread, keep the low-freq cycle to decrease load
|
||||
mutex.unlock();
|
||||
|
||||
}
|
||||
|
||||
void Amuencha::FrequencyAnalyzer::run()
|
||||
{
|
||||
// Solution with a wait condition + time
|
||||
// other possible solution = timer, but that would need to be stopped
|
||||
|
||||
mutex.lock();
|
||||
|
||||
// waiting_time is a mutex-protected info
|
||||
waiting_time = CYCLE_PERIOD;
|
||||
|
||||
// loop starts with mutex locked
|
||||
while (true) {
|
||||
condition.wait(&mutex, waiting_time);
|
||||
|
||||
if (status==QUIT_NOW) break;
|
||||
|
||||
if (status==HAS_NEW_DATA) {
|
||||
// Swap the chunks to a local variable, so:
|
||||
// - the class chunks becomes empty
|
||||
// - the audio thread can feed it more data while computing frequencies
|
||||
vector<pair<float*,int>> chunks;
|
||||
chunks.swap(this->chunks);
|
||||
status = NO_DATA; // will be updated if new data indeed arrives
|
||||
mutex.unlock();
|
||||
|
||||
// Now, we can take the time to do the frequency computations
|
||||
data_mutex.lock();
|
||||
|
||||
int new_data_size = 0;
|
||||
for (auto c: chunks) new_data_size += c.second;
|
||||
// shift the old data to make room for the new
|
||||
int new_data_pos = big_buffer.size()-new_data_size;
|
||||
//cout << "data " << new_data_size << " " << big_buffer.size() << endl;
|
||||
// std::copy can cope with overlapping regions in this copy direction
|
||||
if (new_data_pos>0) copy(big_buffer.begin()+new_data_size, big_buffer.end(), big_buffer.begin());
|
||||
// now copy each chunk at its position in the big buffer
|
||||
for (auto c: chunks) {
|
||||
if (new_data_pos<0) {
|
||||
// discard too old chunks
|
||||
if (c.second <= -new_data_pos) {
|
||||
new_data_pos += c.second;
|
||||
continue;
|
||||
}
|
||||
// partial copy of chunks that fall on the edge
|
||||
copy(c.first+new_data_pos, c.first+c.second, &big_buffer[0]);
|
||||
new_data_pos = c.second+new_data_pos;
|
||||
continue;
|
||||
}
|
||||
copy(c.first, c.first+c.second, &big_buffer[new_data_pos]);
|
||||
new_data_pos += c.second;
|
||||
}
|
||||
|
||||
// Apply the filter bank
|
||||
float *bbend = &big_buffer[0] + big_buffer.size();
|
||||
for (int idx=0; idx<frequencies.size(); ++idx) {
|
||||
const auto& ws = windowed_sines[idx];
|
||||
int wsize = ws.size();
|
||||
float* sig = bbend - wsize;
|
||||
v4sf acc = {0.f, 0.f, 0.f, 0.f};
|
||||
for (int i=0; i<wsize; ++i) acc += ws[i] * sig[i];
|
||||
float norm = acc[0]*acc[0] + acc[1]*acc[1];
|
||||
float reassign = frequencies[idx];
|
||||
if (norm>0) {
|
||||
reassign -= (acc[0] * acc[3] - acc[1] * acc[2]) * samplerate_div_2pi / norm;
|
||||
}
|
||||
reassigned_frequencies[idx] = reassign;
|
||||
power_spectrum[idx] = norm * power_normalization_factors[idx];
|
||||
}
|
||||
|
||||
// Notify our listener that new power/frequency content has arrived
|
||||
power_handler(reassigned_frequencies, power_spectrum);
|
||||
|
||||
// setup can now lock and change data structures if needed
|
||||
data_mutex.unlock();
|
||||
|
||||
// relock for the condition wait
|
||||
mutex.lock();
|
||||
continue;
|
||||
}
|
||||
|
||||
// No more data ? Force waiting until data arrives
|
||||
waiting_time = ULONG_MAX;
|
||||
// keep the lock for next loop
|
||||
}
|
||||
mutex.unlock();
|
||||
}
|
||||
|
||||
void Amuencha::FrequencyAnalyzer::setup(float sampling_rate,
|
||||
PowerHandler&& handler,
|
||||
int min_midi_note,
|
||||
int max_midi_note,
|
||||
float periods,
|
||||
float max_buffer_duration)
|
||||
{
|
||||
// Block data processing while changing the data structures
|
||||
data_mutex.lock();
|
||||
|
||||
this->samplerate_div_2pi = sampling_rate/two_pi;
|
||||
|
||||
// Start with A440, but this could be parametrizable as well
|
||||
const float fref = 440;
|
||||
const float log2_fref = log2(fref);
|
||||
const int aref = 69; // use the midi numbering scheme, because why not
|
||||
float log2_fmin = (min_midi_note - aref) / 12. + log2_fref;
|
||||
float log2_fmax = (max_midi_note - aref) / 12. + log2_fref;
|
||||
int num_bins = max_midi_note - min_midi_note;
|
||||
|
||||
frequencies.resize(num_bins);
|
||||
for (int b{0}; b < num_bins; ++b)
|
||||
{
|
||||
float bratio = (float)b / (num_bins - 1.);
|
||||
frequencies[b] = exp2(log2_fmin + (log2_fmax - log2_fmin) * bratio);
|
||||
}
|
||||
|
||||
this->reassigned_frequencies = frequencies;
|
||||
this->power_spectrum.resize(frequencies.size());
|
||||
|
||||
power_handler = std::move(handler);
|
||||
|
||||
// Prepare the windows
|
||||
//std::vector<std::vector<v4sf>> windowed_sines;
|
||||
windowed_sines.resize(frequencies.size());
|
||||
power_normalization_factors.resize(frequencies.size());
|
||||
|
||||
int big_buffer_size = 0;
|
||||
|
||||
for (int idx{0}; idx < frequencies.size(); ++idx)
|
||||
{
|
||||
// for each freq, span at least 20 periods for more precise measurements
|
||||
// This still gives reasonable latencies, e.g. 50ms at 400Hz, 100ms at 200Hz, 400ms at 50Hz...
|
||||
// Could also span more for even better measurements, with larger
|
||||
// computation cost and latency
|
||||
float f = frequencies[idx];
|
||||
int window_size = (int)(min(periods / f, max_buffer_duration * 0.001f) * sampling_rate);
|
||||
vector<float> window(window_size);
|
||||
vector<float> window_deriv(window_size);
|
||||
if (!read_from_cache(window, window_deriv)) {
|
||||
initialize_window(window);
|
||||
initialize_window_deriv(window_deriv);
|
||||
write_to_cache(window, window_deriv);
|
||||
}
|
||||
windowed_sines[idx].resize(window_size);
|
||||
float wsum = 0;
|
||||
for (int i=0; i<window_size;) {
|
||||
if (i<window_size-4) {
|
||||
v4sf tfs = {
|
||||
(float)(i-window_size-1) / sampling_rate,
|
||||
(float)(i+1-window_size-1) / sampling_rate,
|
||||
(float)(i+2-window_size-1) / sampling_rate,
|
||||
(float)(i+3-window_size-1) / sampling_rate
|
||||
};
|
||||
tfs *= (float)(-two_pi*f);
|
||||
v4sf sin_tf, cos_tf;
|
||||
sincos_ps(tfs, &sin_tf, &cos_tf);
|
||||
for (int j=0; j<3; ++j) {
|
||||
v4sf ws = {
|
||||
cos_tf[j] * window[i+j],
|
||||
sin_tf[j] * window[i+j],
|
||||
cos_tf[j] * window_deriv[i+j],
|
||||
sin_tf[j] * window_deriv[i+j]
|
||||
};
|
||||
windowed_sines[idx][i+j] = ws;
|
||||
wsum += window[i+j];
|
||||
}
|
||||
i+=4;
|
||||
continue;
|
||||
}
|
||||
float t = (float)(i-window_size-1) / sampling_rate;
|
||||
float re = cosf(-two_pi*t*f);
|
||||
float im = sinf(-two_pi*t*f);
|
||||
v4sf ws = {
|
||||
re * window[i],
|
||||
im * window[i],
|
||||
re * window_deriv[i],
|
||||
im * window_deriv[i]
|
||||
};
|
||||
windowed_sines[idx][i] = ws;
|
||||
wsum += window[i];
|
||||
++i;
|
||||
}
|
||||
power_normalization_factors[idx] = 1. / (wsum*wsum);
|
||||
big_buffer_size = max(big_buffer_size, window_size);
|
||||
}
|
||||
|
||||
big_buffer.clear();
|
||||
// fill with 0 signal content to start with
|
||||
big_buffer.resize(big_buffer_size, 0.f);
|
||||
|
||||
// Processing can resume with the new data structures in place.
|
||||
data_mutex.unlock();
|
||||
}
|
||||
|
||||
void Amuencha::FrequencyAnalyzer::invalidate_samples()
|
||||
{
|
||||
mutex.lock();
|
||||
data_mutex.lock();
|
||||
chunks.clear();
|
||||
data_mutex.unlock();
|
||||
mutex.unlock();
|
||||
}
|
||||
|
||||
void Amuencha::FrequencyAnalyzer::initialize_window(std::vector<float>& window) {
|
||||
// Kaiser window with a parameter of alpha=3 that nullifies the window on edges
|
||||
int size = window.size();
|
||||
const float two_over_N = 2./size;
|
||||
const float alpha = 3.;
|
||||
const float alpha_pi = alpha * pi;
|
||||
const float inv_denom = 1. /boost::math::cyl_bessel_i(0., alpha_pi);
|
||||
|
||||
for (int i{0}; i < size; ++i)
|
||||
{
|
||||
float p = i * two_over_N - 1.;
|
||||
window[i] = boost::math::cyl_bessel_i(0., alpha_pi * sqrt(1. - p * p)) * inv_denom;
|
||||
}
|
||||
}
|
||||
|
||||
void Amuencha::FrequencyAnalyzer::initialize_window_deriv(std::vector<float>& window) {
|
||||
// Derivative of the Kaiser window with a parameter of alpha=3 that nullifies the window on edges
|
||||
int size = window.size();
|
||||
const float two_over_N = 2./size;
|
||||
const float alpha = 3.;
|
||||
const float alpha_pi = alpha * pi;
|
||||
const float inv_denom = 1./boost::math::cyl_bessel_i(0., alpha_pi);
|
||||
|
||||
for (int i{1}; i<size; ++i)
|
||||
{
|
||||
float p = i * two_over_N - 1.;
|
||||
window[i] = boost::math::cyl_bessel_i(1., alpha_pi * sqrt(1. - p* p)) * inv_denom
|
||||
* alpha_pi / sqrt(1. - p * p) * (-p) * two_over_N;
|
||||
}
|
||||
// lim I1(x)/x as x->0 = 1/2
|
||||
window[0] = 0.5 * inv_denom * alpha_pi * alpha_pi * two_over_N;
|
||||
}
|
||||
|
||||
bool Amuencha::FrequencyAnalyzer::read_from_cache(std::vector<float>& window, std::vector<float>& window_deriv)
|
||||
{
|
||||
auto it = mem_win_cache.find(window.size());
|
||||
if (it != mem_win_cache.end())
|
||||
{
|
||||
window = it->second;
|
||||
auto itd = mem_winderiv_cache.find(window.size());
|
||||
if (itd != mem_winderiv_cache.end())
|
||||
{
|
||||
window_deriv = itd->second;
|
||||
return true;
|
||||
}
|
||||
// else, load from disk
|
||||
}
|
||||
|
||||
// TODO: make the cache location parametrizable (and an option to not use it)
|
||||
ifstream file(".amuencha_cache/w" + to_string(window.size()) + ".bin", ios::binary);
|
||||
if (file.is_open())
|
||||
{
|
||||
file.read(reinterpret_cast<char*>(&window[0]), window.size() * sizeof(float));
|
||||
file.read(reinterpret_cast<char*>(&window_deriv[0]), window_deriv.size() * sizeof(float));
|
||||
if (file.tellg() != (window.size() + window_deriv.size()) * sizeof(float))
|
||||
{
|
||||
cerr << "Error: invalid cache .amuencha_cache/w" + to_string(window.size()) + ".bin \n";
|
||||
return false;
|
||||
}
|
||||
return true;
|
||||
}
|
||||
return false;
|
||||
}
|
||||
|
||||
void Amuencha::FrequencyAnalyzer::write_to_cache(std::vector<float>& window, std::vector<float>& window_deriv)
|
||||
{
|
||||
#if defined(_WIN32) || defined(_WIN64)
|
||||
mkdir(".amuencha_cache");
|
||||
#else
|
||||
mkdir(".amuencha_cache", 0755);
|
||||
#endif
|
||||
ofstream file(".amuencha_cache/w" + to_string(window.size()) + ".bin", ios::binary | ios::trunc);
|
||||
file.write(reinterpret_cast<char*>(&window[0]), window.size() * sizeof(float));
|
||||
file.write(reinterpret_cast<char*>(&window_deriv[0]), window_deriv.size() * sizeof(float));
|
||||
mem_win_cache[window.size()] = window;
|
||||
mem_winderiv_cache[window.size()] = window_deriv;
|
||||
}
|
117
Amuencha/FrequencyAnalyzer.hpp
Normal file
117
Amuencha/FrequencyAnalyzer.hpp
Normal file
|
@ -0,0 +1,117 @@
|
|||
/*
|
||||
Analyseur de MUsique et ENtraînement au CHAnt
|
||||
|
||||
This file is released under either of the two licenses below, your choice:
|
||||
- LGPL v2.1 or later, https://www.gnu.org
|
||||
The GNU Lesser General Public Licence, version 2.1 or,
|
||||
at your option, any later version.
|
||||
- CeCILL-C, http://www.cecill.info
|
||||
The CeCILL-C license is more adapted to the French laws,
|
||||
but can be converted to the GNU LGPL.
|
||||
|
||||
You can use, modify and/or redistribute the software under the terms of any
|
||||
of these licences, which should have been provided to you together with this
|
||||
sofware. If that is not the case, you can find a copy of the licences on
|
||||
the indicated web sites.
|
||||
|
||||
By Nicolas . Brodu @ Inria . fr
|
||||
|
||||
See http://nicolas.brodu.net/programmation/amuencha/ for more information
|
||||
*/
|
||||
|
||||
#ifndef AUDIOINPUTTHREAD_H
|
||||
#define AUDIOINPUTTHREAD_H
|
||||
|
||||
#include <QThread>
|
||||
#include <QMutex>
|
||||
#include <QWaitCondition>
|
||||
|
||||
|
||||
#include <vector>
|
||||
#include <map>
|
||||
#include <functional>
|
||||
|
||||
namespace Amuencha
|
||||
{
|
||||
class FrequencyAnalyzer : public QThread
|
||||
{
|
||||
public:
|
||||
FrequencyAnalyzer(QObject *parent = 0);
|
||||
~FrequencyAnalyzer();
|
||||
|
||||
// called by the RT audio thread to feed new data
|
||||
void new_data(float *chunk, int size);
|
||||
|
||||
// Arguments are: frequency bins [f,f+1), and power in each bin
|
||||
// hence the first vector size is 1 more than the second
|
||||
// TODO if useful: make a proper listener API with id, etc
|
||||
typedef std::function<void(const std::vector<float>&,const std::vector<float>&)> PowerHandler;
|
||||
PowerHandler power_handler;
|
||||
|
||||
// sampling rate in Hz
|
||||
// freqs in Hz
|
||||
// PowerHandler for the callback
|
||||
// max_buffer_duration in milliseconds, specifies the largest buffer for computing the frequency content
|
||||
// At lower frequencies, long buffers are needed for accurate frequency separation.
|
||||
// When that max buffer duration is reached, then it is capped and the frequency resolution decreases
|
||||
// Too low buffers also limit the min_freq, duration must be >= period
|
||||
void setup(float sampling_rate,
|
||||
PowerHandler&& handler,
|
||||
int min_midi_note = 24,
|
||||
int max_midi_note = 72,
|
||||
float periods = 20,
|
||||
float max_buffer_duration = 500);
|
||||
|
||||
// call to remove all existing chunk references
|
||||
// this may cause signal loss, but this is usually called precisely when the signal is lost...
|
||||
void invalidate_samples();
|
||||
|
||||
protected:
|
||||
void run() override;
|
||||
|
||||
// Multi-threading related variables
|
||||
static const unsigned long CYCLE_PERIOD = 20; // in milliseconds
|
||||
QMutex mutex, data_mutex;
|
||||
QWaitCondition condition;
|
||||
unsigned long waiting_time = CYCLE_PERIOD;
|
||||
enum Status : std::uint8_t
|
||||
{
|
||||
NO_DATA = 0,
|
||||
HAS_NEW_DATA = 1,
|
||||
QUIT_NOW = 2
|
||||
};
|
||||
Status status;
|
||||
|
||||
// new data chunks arrived since the last periodic processing
|
||||
std::vector<std::pair<float*,int>> chunks;
|
||||
|
||||
// The window is the usual Kaiser with alpha=3
|
||||
static void initialize_window(std::vector<float>& window);
|
||||
static void initialize_window_deriv(std::vector<float>& window);
|
||||
|
||||
// The filter bank. One filter per frequency
|
||||
// The 4 entries in the v4sf are the real, imaginary parts of the windowed
|
||||
// sine wavelet, and the real, imaginary parts of the derived windowed sine
|
||||
// used for reassigning the power spectrum.
|
||||
// Hopefully, with SIMD, computing all 4 of them is the same price as just one
|
||||
// TODO: v8sf and compute 2 freqs at the same time
|
||||
typedef float v4sf __attribute__ ((vector_size (16)));
|
||||
std::vector<std::vector<v4sf>> windowed_sines;
|
||||
std::vector<float> frequencies;
|
||||
std::vector<float> power_normalization_factors;
|
||||
float samplerate_div_2pi;
|
||||
std::vector<float> big_buffer;
|
||||
std::vector<float> reassigned_frequencies;
|
||||
std::vector<float> power_spectrum;
|
||||
|
||||
// caching computations for faster init
|
||||
// on disk for persistence between executions,
|
||||
// in memory for avoiding reloading from disk when changing the spiral size
|
||||
bool read_from_cache(std::vector<float>& window, std::vector<float>& window_deriv);
|
||||
void write_to_cache(std::vector<float>& window, std::vector<float>& window_deriv);
|
||||
std::map<int, std::vector<float>> mem_win_cache, mem_winderiv_cache;
|
||||
};
|
||||
|
||||
} // namespace Amuencha
|
||||
|
||||
#endif // AUDIOINPUTTHREAD_H
|
|
@ -5,7 +5,6 @@ Amuencha::SpiralDisplay::SpiralDisplay()
|
|||
, max_midi_note{72}
|
||||
, gain{1.f}
|
||||
, visual_fading{1}
|
||||
, on_new_frequencies{[]{}}
|
||||
{
|
||||
for (int i{0}; i < 12; i++)
|
||||
note_positions[i] = std::polar(.9f, half_pi - i * two_pi / 12);
|
||||
|
@ -24,11 +23,6 @@ void Amuencha::SpiralDisplay::set_min_max_notes(int min_midi_note, int max_midi_
|
|||
// update();
|
||||
}
|
||||
|
||||
std::vector<float> Amuencha::SpiralDisplay::get_frequencies() const noexcept
|
||||
{
|
||||
return frequencies;
|
||||
}
|
||||
|
||||
void Amuencha::SpiralDisplay::compute_frequencies()
|
||||
{
|
||||
// Now the spiral
|
||||
|
@ -38,16 +32,17 @@ void Amuencha::SpiralDisplay::compute_frequencies()
|
|||
const int aref = 69; // use the midi numbering scheme, because why not
|
||||
float log2_fmin = (min_midi_note - aref) / 12. + log2_fref;
|
||||
float log2_fmax = (max_midi_note - aref) / 12. + log2_fref;
|
||||
int approx_pix_bin_width = 3;
|
||||
// int approx_pix_bin_width = 3;
|
||||
// number of frequency bins is the number of pixels
|
||||
// along the spiral path / approx_pix_bin_width
|
||||
// According to mathworld, the correct formula for the path length
|
||||
// from the origin involves sqrt and log computations.
|
||||
// Here, we just want some approximate pixel count
|
||||
// => use all circles for the approx
|
||||
int num_octaves = (max_midi_note - min_midi_note + 11) / 12;
|
||||
float approx_num_pix = 0.5 * half * pi * num_octaves;
|
||||
int num_bins = (int)(approx_num_pix / approx_pix_bin_width);
|
||||
// int num_octaves = (max_midi_note - min_midi_note + 11) / 12;
|
||||
// float approx_num_pix = 0.5 * half * pi * num_octaves;
|
||||
// int num_bins = (int)(approx_num_pix / approx_pix_bin_width);
|
||||
int num_bins = max_midi_note - min_midi_note;
|
||||
// one more bound than number of bins
|
||||
display_bins.resize(num_bins + 1);
|
||||
bin_sizes.resize(num_bins);
|
||||
|
@ -61,21 +56,18 @@ void Amuencha::SpiralDisplay::compute_frequencies()
|
|||
// used to it (e.g. wikipedia note circle)
|
||||
const float theta_min = half_pi - two_pi * (min_midi_note % 12) / 12;
|
||||
// wrap in anti-trigonometric direction
|
||||
const float theta_max = theta_min - two_pi * (max_midi_note - min_midi_note) / 12;
|
||||
const float theta_max = theta_min - two_pi * (max_midi_note - min_midi_note - 1) / 12;
|
||||
|
||||
frequencies.resize(num_bins);
|
||||
for (int b{0}; b < num_bins; ++b)
|
||||
{
|
||||
float bratio = (float)b / (num_bins - 1.);
|
||||
frequencies[b] = exp2(log2_fmin + (log2_fmax - log2_fmin) * bratio);
|
||||
bratio = (float)(b - 0.5) / (float)(num_bins - 1.);
|
||||
float bratio = (float)(b - 0.5) / (float)(num_bins - 1.);
|
||||
display_bins[b] = exp2(log2_fmin + (log2_fmax - log2_fmin) * bratio);
|
||||
spiral_r_a[b].r = rmin + (rmax - rmin) * bratio;
|
||||
spiral_r_a[b].a = theta_min + (theta_max - theta_min) * bratio;
|
||||
spiral_positions[b] = std::polar(spiral_r_a[b].r, spiral_r_a[b].a);
|
||||
}
|
||||
|
||||
// repeat one more time to avoid a second for loops
|
||||
// repeat one more time to avoid a second for loop
|
||||
float bratio = (float)(num_bins - 0.5) / (float)(num_bins - 1.);
|
||||
display_bins[num_bins] = exp2(log2_fmin + (log2_fmax - log2_fmin) * bratio);
|
||||
spiral_r_a[num_bins].r = rmin + (rmax - rmin) * bratio;
|
||||
|
@ -87,14 +79,12 @@ void Amuencha::SpiralDisplay::compute_frequencies()
|
|||
|
||||
display_spectrum.resize(num_bins);
|
||||
fill(display_spectrum.begin(), display_spectrum.end(), 0.);
|
||||
|
||||
on_new_frequencies();
|
||||
}
|
||||
|
||||
void Amuencha::SpiralDisplay::power_handler(const std::vector<float>& reassigned_frequencies,
|
||||
const std::vector<float>& power_spectrum)
|
||||
{
|
||||
// fill(display_spectrum.begin(), display_spectrum.end(), 0.);
|
||||
fill(display_spectrum.begin(), display_spectrum.end(), 0.);
|
||||
|
||||
// simple histogram-like sum, assuming power entries are normalized
|
||||
int nidx = reassigned_frequencies.size();
|
||||
|
|
|
@ -4,7 +4,7 @@
|
|||
#include <avnd/concepts/painter.hpp>
|
||||
|
||||
#include <array>
|
||||
#include <ranges>
|
||||
#include <vector>
|
||||
#include <complex>
|
||||
|
||||
namespace Amuencha
|
||||
|
@ -30,8 +30,8 @@ struct SpiralDisplay
|
|||
if (display_bins.empty())
|
||||
compute_frequencies();
|
||||
|
||||
ctx.set_stroke_color({0, 0, 0, 255});
|
||||
|
||||
// Draw note axis and names
|
||||
// TODO : replace with CSV background
|
||||
for (int i{0}; i < 12; i++)
|
||||
{
|
||||
ctx.move_to(half, half);
|
||||
|
@ -60,7 +60,7 @@ struct SpiralDisplay
|
|||
|
||||
for (int b{0}; b < display_spectrum.size(); ++b)
|
||||
{
|
||||
float amplitude = 0.8 / num_octaves * std::min(1.f, display_spectrum[b] * gain);
|
||||
float amplitude = 0.8 / num_octaves * std::min(1.f, display_spectrum[b] * 100);
|
||||
//if (display_spectrum[b]>0) cout << display_spectrum[b] << endl;
|
||||
// power normalised between 0 and 1 => 0.1 = spiral branch
|
||||
float r = spiral_r_a[b].r + amplitude;
|
||||
|
@ -71,22 +71,19 @@ struct SpiralDisplay
|
|||
ctx.line_to(x(p.real()), y(p.imag()));
|
||||
}
|
||||
|
||||
for (int b = spiral_positions.size() - 1; b >= 0; --b)
|
||||
ctx.line_to(x(spiral_positions[b].real()), y(spiral_positions[b].imag()));
|
||||
// for (int b = spiral_positions.size() - 1; b >= 0; --b)
|
||||
// ctx.line_to(x(spiral_positions[b].real()), y(spiral_positions[b].imag()));
|
||||
|
||||
ctx.stroke();
|
||||
ctx.update();
|
||||
}
|
||||
|
||||
[[nodiscard]] std::vector<float> get_frequencies() const noexcept;
|
||||
|
||||
std::function<void()> on_new_frequencies;
|
||||
|
||||
// // Callback when the power spectrum is available at the prescribed frequencies
|
||||
// // The ID is that of the caller, setting the color of the display
|
||||
void power_handler(const std::vector<float>& reassigned_frequencies,
|
||||
const std::vector<float>& power_spectrum);
|
||||
|
||||
void compute_frequencies();
|
||||
private:
|
||||
static const constexpr std::string_view note_names[12]
|
||||
{"C", "C#", "D", "D#", "E", "F", "F#", "G", "G#", "A", "A#", "B"};
|
||||
|
@ -106,9 +103,6 @@ private:
|
|||
|
||||
int min_midi_note, max_midi_note, visual_fading;
|
||||
|
||||
// central frequencies (log space)
|
||||
std::vector<float> frequencies;
|
||||
|
||||
// local copy for maintaining the display, adapted to the drawing bins
|
||||
std::vector<float> display_spectrum;
|
||||
|
||||
|
@ -135,8 +129,6 @@ private:
|
|||
{
|
||||
return half - y * half;
|
||||
}
|
||||
|
||||
void compute_frequencies();
|
||||
};
|
||||
|
||||
}
|
||||
|
|
|
@ -20,12 +20,15 @@ avnd_score_plugin_add(
|
|||
Amuencha/Amuencha.hpp
|
||||
Amuencha/AmuenchaModel.hpp
|
||||
Amuencha/AmuenchaModel.cpp
|
||||
Amuencha/FrequencyAnalyzer.hpp
|
||||
Amuencha/FrequencyAnalyzer.cpp
|
||||
Amuencha/AmuenchaUi.hpp
|
||||
Amuencha/SpiralDisplay.hpp
|
||||
Amuencha/SpiralDisplay.cpp
|
||||
Amuencha/sse_mathfun.h
|
||||
Amuencha/CustomSlider.hpp
|
||||
Amuencha/CustomSlider.cpp
|
||||
TARGET amuencha
|
||||
MAIN_CLASS Analyser
|
||||
MAIN_CLASS Model
|
||||
NAMESPACE Amuencha
|
||||
)
|
||||
|
||||
|
|
17
README.md
17
README.md
|
@ -2,16 +2,25 @@
|
|||
An [ossia score](https://ossia.io) add-on cloned from the [avendish template](https://github.com/ossia-templates/score-avnd-simple-template)\
|
||||
It aims at porting Nicolas Brodu's [frequency analyzer](https://nicolas.brodu.net/en/programmation/amuencha/index.html) to Avendish
|
||||
|
||||

|
||||
|
||||
## Features
|
||||
|
||||
* Draw background spiral and notes axis
|
||||
|
||||
## TODO
|
||||
|
||||
* Visualisation
|
||||
- [ ] Redraw with min and max midi value
|
||||
- [ ] Rimplement all draw function without storing painters
|
||||
* Ui
|
||||
- [X] Redraw with Min and Max midi value
|
||||
- [X] Rimplement draw function without storing painters
|
||||
- [ ] add an SVG backgound with fixed Axis and not names
|
||||
- [ ] Min and Max note in one ranger rather than 2 sliders
|
||||
- [ ] Display note Names and frequencies
|
||||
* Port Backend analyzer
|
||||
- [ ] Reimplement with avendish [threaded worker](https://celtera.github.io/avendish/advanced/workers.html)
|
||||
- [ ] Asses the need for setting params therough [shared instance](https://gothub.ducks.party/celtera/avendish/blob/6fb720259c176442db32aafad67e27b5fe4b7b39/include/halp/shared_instance.hpp)
|
||||
* Additional features
|
||||
- [ ] Midi output
|
||||
- [ ] audio output per frequency band
|
||||
- [ ] MPE output
|
||||
- [ ] Calculate pitch corelation between input channels (maybe draw from [S8-PDP](https://gothub.ducks.party/scrime-u-bordeaux/S8-PDP))
|
||||
|
||||
|
|
BIN
amuencha.png
Normal file
BIN
amuencha.png
Normal file
Binary file not shown.
After Width: | Height: | Size: 65 KiB |
Loading…
Add table
Reference in a new issue