[frequencies] seperate compute_frequencies betwin analyzer and display
This commit is contained in:
parent
a4a4ba249e
commit
c8e051a4a3
7 changed files with 48 additions and 71 deletions
|
@ -4,7 +4,17 @@ namespace Amuencha
|
|||
{
|
||||
void Model::prepare(setup info)
|
||||
{
|
||||
sampling_rate = info.rate;
|
||||
if (analyzer.isRunning()) return;
|
||||
|
||||
analyzer.setup(info.rate,
|
||||
[&] (const std::vector<float>& r_f,
|
||||
const std::vector<float>& p_s)
|
||||
{
|
||||
this->send_message({.reassigned_frequencies = r_f,
|
||||
.power_spectrum = p_s});
|
||||
});
|
||||
|
||||
analyzer.start(QThread::NormalPriority);
|
||||
}
|
||||
|
||||
void Model::operator()(tick t)
|
||||
|
|
|
@ -35,22 +35,6 @@ public:
|
|||
halp::spinbox_i32<"Periods", halp::range{.min = 0, .max = 99, .init = 30}> periods;
|
||||
} inputs;
|
||||
|
||||
void process_message(const std::vector<float>& frequencies)
|
||||
{
|
||||
analyzer.setup(sampling_rate,
|
||||
frequencies,
|
||||
[&] (const std::vector<float>& r_f,
|
||||
const std::vector<float>& p_s)
|
||||
{
|
||||
this->send_message({.reassigned_frequencies = r_f,
|
||||
.power_spectrum = p_s});
|
||||
},
|
||||
inputs.periods);
|
||||
|
||||
if (!analyzer.isRunning())
|
||||
analyzer.start(QThread::NormalPriority);
|
||||
}
|
||||
|
||||
struct outs
|
||||
{
|
||||
halp::midi_bus<"Output"> midi;
|
||||
|
@ -68,7 +52,6 @@ public:
|
|||
struct ui;
|
||||
|
||||
private:
|
||||
float sampling_rate;
|
||||
FrequencyAnalyzer analyzer;
|
||||
};
|
||||
|
||||
|
|
|
@ -30,34 +30,22 @@ struct Model::ui
|
|||
// Define the communication between UI and processor.
|
||||
struct bus
|
||||
{
|
||||
std::function<void(std::vector<float>&&)> send_message;
|
||||
|
||||
// Set up connections
|
||||
void init(ui& self)
|
||||
{
|
||||
self.spiral.set_frequencies_callback(
|
||||
[&] { this->send_message(self.spiral.get_frequencies()); }
|
||||
);
|
||||
|
||||
self.controls.min.on_changed = [&] (int min)
|
||||
{
|
||||
// self.spiral.set_min_max_notes(min, self.controls.max.value);
|
||||
self.spiral.set_min_max_notes(min, self.controls.max.value);
|
||||
};
|
||||
self.controls.max.on_changed = [&] (int max)
|
||||
{
|
||||
// self.spiral.set_min_max_notes(self.controls.min.value, max);
|
||||
self.spiral.set_min_max_notes(self.controls.min.value, max);
|
||||
};
|
||||
}
|
||||
|
||||
// Receive a message on the UI thread from the processing thread
|
||||
static void process_message(ui& self, const processor_to_ui& msg)
|
||||
{
|
||||
if (!first_msg)
|
||||
{
|
||||
self.spiral.compute_frequencies();
|
||||
first_msg = true;
|
||||
}
|
||||
|
||||
if (msg.power_spectrum.empty() ||
|
||||
msg.reassigned_frequencies.empty())
|
||||
return;
|
||||
|
@ -65,10 +53,6 @@ struct Model::ui
|
|||
self.spiral.power_handler(msg.reassigned_frequencies,
|
||||
msg.power_spectrum);
|
||||
}
|
||||
|
||||
static bool first_msg;
|
||||
};
|
||||
};
|
||||
}
|
||||
|
||||
inline bool Amuencha::Model::ui::bus::first_msg = false;
|
||||
|
|
|
@ -174,13 +174,32 @@ void Amuencha::FrequencyAnalyzer::run()
|
|||
mutex.unlock();
|
||||
}
|
||||
|
||||
void Amuencha::FrequencyAnalyzer::setup(float sampling_rate, const std::vector<float>& frequencies, PowerHandler&& handler, float periods, float max_buffer_duration)
|
||||
void Amuencha::FrequencyAnalyzer::setup(float sampling_rate,
|
||||
PowerHandler&& handler,
|
||||
int min_midi_note,
|
||||
int max_midi_note,
|
||||
float periods,
|
||||
float max_buffer_duration)
|
||||
{
|
||||
// Block data processing while changing the data structures
|
||||
data_mutex.lock();
|
||||
|
||||
this->samplerate_div_2pi = sampling_rate/two_pi;
|
||||
this->frequencies = frequencies;
|
||||
|
||||
// Start with A440, but this could be parametrizable as well
|
||||
const float fref = 440;
|
||||
const float log2_fref = log2(fref);
|
||||
const int aref = 69; // use the midi numbering scheme, because why not
|
||||
float log2_fmin = (min_midi_note - aref) / 12. + log2_fref;
|
||||
float log2_fmax = (max_midi_note - aref) / 12. + log2_fref;
|
||||
int num_bins = max_midi_note - min_midi_note;
|
||||
|
||||
frequencies.resize(num_bins);
|
||||
for (int b{0}; b < num_bins; ++b)
|
||||
{
|
||||
float bratio = (float)b / (num_bins - 1.);
|
||||
frequencies[b] = exp2(log2_fmin + (log2_fmax - log2_fmin) * bratio);
|
||||
}
|
||||
|
||||
this->reassigned_frequencies = frequencies;
|
||||
this->power_spectrum.resize(frequencies.size());
|
||||
|
|
|
@ -56,7 +56,12 @@ public:
|
|||
// At lower frequencies, long buffers are needed for accurate frequency separation.
|
||||
// When that max buffer duration is reached, then it is capped and the frequency resolution decreases
|
||||
// Too low buffers also limit the min_freq, duration must be >= period
|
||||
void setup(float sampling_rate, const std::vector<float>& frequencies, PowerHandler&& handler, float periods = 20, float max_buffer_duration = 500);
|
||||
void setup(float sampling_rate,
|
||||
PowerHandler&& handler,
|
||||
int min_midi_note = 24,
|
||||
int max_midi_note = 72,
|
||||
float periods = 20,
|
||||
float max_buffer_duration = 500);
|
||||
|
||||
// call to remove all existing chunk references
|
||||
// this may cause signal loss, but this is usually called precisely when the signal is lost...
|
||||
|
|
|
@ -5,7 +5,6 @@ Amuencha::SpiralDisplay::SpiralDisplay()
|
|||
, max_midi_note{72}
|
||||
, gain{1.f}
|
||||
, visual_fading{1}
|
||||
, on_new_frequencies{[]{}}
|
||||
{
|
||||
for (int i{0}; i < 12; i++)
|
||||
note_positions[i] = std::polar(.9f, half_pi - i * two_pi / 12);
|
||||
|
@ -24,16 +23,6 @@ void Amuencha::SpiralDisplay::set_min_max_notes(int min_midi_note, int max_midi_
|
|||
// update();
|
||||
}
|
||||
|
||||
std::vector<float> Amuencha::SpiralDisplay::get_frequencies() const noexcept
|
||||
{
|
||||
return frequencies;
|
||||
}
|
||||
|
||||
void Amuencha::SpiralDisplay::set_frequencies_callback(std::function<void ()> &&callback)
|
||||
{
|
||||
on_new_frequencies = callback;
|
||||
}
|
||||
|
||||
void Amuencha::SpiralDisplay::compute_frequencies()
|
||||
{
|
||||
// Now the spiral
|
||||
|
@ -43,16 +32,17 @@ void Amuencha::SpiralDisplay::compute_frequencies()
|
|||
const int aref = 69; // use the midi numbering scheme, because why not
|
||||
float log2_fmin = (min_midi_note - aref) / 12. + log2_fref;
|
||||
float log2_fmax = (max_midi_note - aref) / 12. + log2_fref;
|
||||
int approx_pix_bin_width = 3;
|
||||
// int approx_pix_bin_width = 3;
|
||||
// number of frequency bins is the number of pixels
|
||||
// along the spiral path / approx_pix_bin_width
|
||||
// According to mathworld, the correct formula for the path length
|
||||
// from the origin involves sqrt and log computations.
|
||||
// Here, we just want some approximate pixel count
|
||||
// => use all circles for the approx
|
||||
int num_octaves = (max_midi_note - min_midi_note + 11) / 12;
|
||||
float approx_num_pix = 0.5 * half * pi * num_octaves;
|
||||
int num_bins = (int)(approx_num_pix / approx_pix_bin_width);
|
||||
// int num_octaves = (max_midi_note - min_midi_note + 11) / 12;
|
||||
// float approx_num_pix = 0.5 * half * pi * num_octaves;
|
||||
// int num_bins = (int)(approx_num_pix / approx_pix_bin_width);
|
||||
int num_bins = max_midi_note - min_midi_note;
|
||||
// one more bound than number of bins
|
||||
display_bins.resize(num_bins + 1);
|
||||
bin_sizes.resize(num_bins);
|
||||
|
@ -66,21 +56,18 @@ void Amuencha::SpiralDisplay::compute_frequencies()
|
|||
// used to it (e.g. wikipedia note circle)
|
||||
const float theta_min = half_pi - two_pi * (min_midi_note % 12) / 12;
|
||||
// wrap in anti-trigonometric direction
|
||||
const float theta_max = theta_min - two_pi * (max_midi_note - min_midi_note) / 12;
|
||||
const float theta_max = theta_min - two_pi * (max_midi_note - min_midi_note - 1) / 12;
|
||||
|
||||
frequencies.resize(num_bins);
|
||||
for (int b{0}; b < num_bins; ++b)
|
||||
{
|
||||
float bratio = (float)b / (num_bins - 1.);
|
||||
frequencies[b] = exp2(log2_fmin + (log2_fmax - log2_fmin) * bratio);
|
||||
bratio = (float)(b - 0.5) / (float)(num_bins - 1.);
|
||||
float bratio = (float)(b - 0.5) / (float)(num_bins - 1.);
|
||||
display_bins[b] = exp2(log2_fmin + (log2_fmax - log2_fmin) * bratio);
|
||||
spiral_r_a[b].r = rmin + (rmax - rmin) * bratio;
|
||||
spiral_r_a[b].a = theta_min + (theta_max - theta_min) * bratio;
|
||||
spiral_positions[b] = std::polar(spiral_r_a[b].r, spiral_r_a[b].a);
|
||||
}
|
||||
|
||||
// repeat one more time to avoid a second for loops
|
||||
// repeat one more time to avoid a second for loop
|
||||
float bratio = (float)(num_bins - 0.5) / (float)(num_bins - 1.);
|
||||
display_bins[num_bins] = exp2(log2_fmin + (log2_fmax - log2_fmin) * bratio);
|
||||
spiral_r_a[num_bins].r = rmin + (rmax - rmin) * bratio;
|
||||
|
@ -92,8 +79,6 @@ void Amuencha::SpiralDisplay::compute_frequencies()
|
|||
|
||||
display_spectrum.resize(num_bins);
|
||||
fill(display_spectrum.begin(), display_spectrum.end(), 0.);
|
||||
|
||||
on_new_frequencies();
|
||||
}
|
||||
|
||||
void Amuencha::SpiralDisplay::power_handler(const std::vector<float>& reassigned_frequencies,
|
||||
|
|
|
@ -78,10 +78,6 @@ struct SpiralDisplay
|
|||
ctx.update();
|
||||
}
|
||||
|
||||
[[nodiscard]] std::vector<float> get_frequencies() const noexcept;
|
||||
|
||||
void set_frequencies_callback(std::function<void()>&& callback);
|
||||
|
||||
// // Callback when the power spectrum is available at the prescribed frequencies
|
||||
// // The ID is that of the caller, setting the color of the display
|
||||
void power_handler(const std::vector<float>& reassigned_frequencies,
|
||||
|
@ -107,9 +103,6 @@ private:
|
|||
|
||||
int min_midi_note, max_midi_note, visual_fading;
|
||||
|
||||
// central frequencies (log space)
|
||||
std::vector<float> frequencies;
|
||||
|
||||
// local copy for maintaining the display, adapted to the drawing bins
|
||||
std::vector<float> display_spectrum;
|
||||
|
||||
|
@ -136,8 +129,6 @@ private:
|
|||
{
|
||||
return half - y * half;
|
||||
}
|
||||
|
||||
std::function<void()> on_new_frequencies;
|
||||
};
|
||||
|
||||
}
|
||||
|
|
Loading…
Add table
Reference in a new issue