[port] compiles, loads, but crashes on startup

This commit is contained in:
thibaud keller 2024-10-22 17:41:00 +01:00
parent 71851154d9
commit 705b5d9404
3 changed files with 202 additions and 33 deletions

116
Amuencha/SpiralDisplay.cpp Normal file
View file

@ -0,0 +1,116 @@
#include "SpiralDisplay.hpp"
Amuencha::SpiralDisplay::SpiralDisplay()
: min_midi_note{24}
, max_midi_note{72}
{
for (int i{0}; i < 12; i++) note_positions[i] = polar(.80f, half_pi - i * two_pi / 12);
}
void Amuencha::SpiralDisplay::compute_frequencies()
{
// Now the spiral
// Start with A440, but this could be parametrizable as well
const float fref = 440;
const float log2_fref = log2(fref);
const int aref = 69; // use the midi numbering scheme, because why not
float log2_fmin = (min_midi_note - aref) / 12. + log2_fref;
float log2_fmax = (max_midi_note - aref) / 12. + log2_fref;
int approx_pix_bin_width = 3;
// number of frequency bins is the number of pixels
// along the spiral path / approx_pix_bin_width
// According to mathworld, the correct formula for the path length
// from the origin involves sqrt and log computations.
// Here, we just want some approximate pixel count
// => use all circles for the approx
int num_octaves = (max_midi_note - min_midi_note + 11) / 12;
float approx_num_pix = 0.5 * half * pi * num_octaves;
int num_bins = (int)(approx_num_pix / approx_pix_bin_width);
// one more bound than number of bins
display_bins.resize(num_bins + 1);
bin_sizes.resize(num_bins);
spiral_positions.resize(num_bins + 1);
spiral_r_a.resize(num_bins + 1);
const float rmin = 0.1;
const float rmax = 0.9;
// The spiral and bounds are the same independently of how
// the log space is divided into notes (e.g. 12ET)
// Make it so c is on the y axis. Turn clockwise because people are
// used to it (e.g. wikipedia note circle)
const float theta_min = half_pi - two_pi * (min_midi_note % 12) / 12;
// wrap in anti-trigonometric direction
const float theta_max = theta_min - two_pi * (max_midi_note - min_midi_note) / 12;
frequencies.resize(num_bins);
for (int b{0}; b < num_bins; ++b)
{
float bratio = (float)b / (num_bins - 1.);
frequencies[b] = exp2(log2_fmin + (log2_fmax - log2_fmin) * bratio);
bratio = (float)(b - 0.5) / (float)(num_bins - 1.);
display_bins[b] = exp2(log2_fmin + (log2_fmax - log2_fmin) * bratio);
spiral_r_a[b].r = rmin + (rmax - rmin) * bratio;
spiral_r_a[b].a = theta_min + (theta_max - theta_min) * bratio;
spiral_positions[b] = polar(spiral_r_a[b].r, spiral_r_a[b].a);
}
// repeat one more time to avoid a second for loops
float bratio = (float)(num_bins - 0.5) / (float)(num_bins - 1.);
display_bins[num_bins] = exp2(log2_fmin + (log2_fmax - log2_fmin) * bratio);
spiral_r_a[num_bins].r = rmin + (rmax - rmin) * bratio;
spiral_r_a[num_bins].a = theta_min + (theta_max - theta_min) * bratio;
spiral_positions[num_bins] = polar(spiral_r_a[num_bins].r, spiral_r_a[num_bins].a);
for (int b{0}; b < num_bins; ++b)
bin_sizes[b] = display_bins[b + 1] - display_bins[b];
for (int id{0}; id < num_ID; ++id)
{
display_spectrum[id].resize(num_bins);
fill(display_spectrum[id].begin(), display_spectrum[id].end(), 0.);
}
}
void Amuencha::SpiralDisplay::power_handler(int ID, const std::vector<float> &reassigned_frequencies, const std::vector<float> &power_spectrum)
{
fill(display_spectrum[ID].begin(), display_spectrum[ID].end(), 0.);
// simple histogram-like sum, assuming power entries are normalized
int nidx = reassigned_frequencies.size();
for (int idx{0}; idx < nidx; ++idx)
{
float rf = reassigned_frequencies[idx];
int ri = idx;
// reassigned frequencies are never too far off the original
//if (rf>display_bins[idx] && rf<display_bins[idx+1]) ri = idx;
//else...
while (rf<display_bins[ri])
{
--ri;
if (ri==-1) break;
}
if (ri==-1) continue; // ignore this frequency, it is below display min
while (rf>display_bins[ri+1])
{
++ri;
if (ri==nidx) break;
}
if (ri==nidx) continue; // ignore this frequency, it is above display max
// Normalization:
// - for a given frequency, the sine/window size dependency was already
// handled in the frequency analyzer
// - but the result should not depend on how many frequencies are provided:
// increasing the resolution should not increase the power
// => we need a kind of density, not just the histogram-like sum of powers
// falling into each bin
// - consider the energy is coming from all the original bin size & sum
// - This way, using finer bins do not increase the total sum
display_spectrum[ID][ri] += power_spectrum[idx] * bin_sizes[idx];
}
// - Then, spread on the destination bin for getting uniform density
// measure independently of the target bin size
for (int idx{0}; idx < nidx; ++idx) display_spectrum[ID][idx] /= bin_sizes[idx];
}

View file

@ -14,42 +14,11 @@ using namespace std;
struct SpiralDisplay
{
SpiralDisplay();
static consteval int width() { return 400; }
static consteval int height() { return 400; }
// Cannot intialize note_positions array with consteval, as polar is not consterpx
// static consteval const array<complex<float>, 12> init_pos()
// {
// return [] <size_t... I> (index_sequence<I...>)
// -> array<complex<float>, 12>
// { return { polar(0.9f, half_pi - I * two_pi/12) ... }; }
// (make_index_sequence<12>{});
// }
// static const constexpr array<complex<float>, 12> note_positions{inti_pos()};
array<complex<float>, 12> note_positions{};
SpiralDisplay()
{
for (int i{0}; i < 12; i++) note_positions[i] = polar(.80f, half_pi - i * two_pi / 12);
}
static const constexpr string_view note_names[12]
{"C", "C#", "D", "D#", "E", "F", "F#", "G", "G#", "A", "A#", "B"};
float half;
float x(float x) const
{
return half + x * half;
}
float y(float y) const
{
return half - y * half;
}
void paint(avnd::painter auto ctx)
{
half = height() * .5f;
@ -65,7 +34,90 @@ struct SpiralDisplay
}
ctx.stroke();
int num_octaves = (max_midi_note - min_midi_note + 11) / 12;
for (int id{0}; id < num_ID; ++id)
{
ctx.move_to(x(spiral_positions[0].real()), y(spiral_positions[0].imag()));
for (int b{0}; b < display_spectrum[id].size(); ++b)
{
float amplitude = 0.8 / num_octaves * min(1.f, display_spectrum[id][b] * gain);
//if (display_spectrum[id][b]>0) cout << display_spectrum[id][b] << endl;
// power normalised between 0 and 1 => 0.1 = spiral branch
float r = spiral_r_a[b].r + amplitude;
auto p = polar(r, spiral_r_a[b].a);
ctx.line_to(x(p.real()), y(p.imag()));
r = spiral_r_a[b + 1].r + amplitude;
p = polar(r, spiral_r_a[b + 1].a);
ctx.line_to(x(p.real()), y(p.imag()));
}
for (int b{static_cast<int>(spiral_positions.size()) - 1}; b >= 0; --b)
ctx.line_to(x(spiral_positions[b].real()), y(spiral_positions[b].imag()));
}
}
private:
static const constexpr string_view note_names[12]
{"C", "C#", "D", "D#", "E", "F", "F#", "G", "G#", "A", "A#", "B"};
static const int num_ID = 2;
// Cannot intialize note_positions array with consteval, as polar is not consterpx
// static consteval const array<complex<float>, 12> init_pos()
// {
// return [] <size_t... I> (index_sequence<I...>)
// -> array<complex<float>, 12>
// { return { polar(0.9f, half_pi - I * two_pi/12) ... }; }
// (make_index_sequence<12>{});
// }
// static const constexpr array<complex<float>, 12> note_positions{inti_pos()};
array<complex<float>, 12> note_positions{};
// central frequencies (log space)
std::vector<float> frequencies;
// local copy for maintaining the display, adapted to the drawing bins
std::vector<std::vector<float>> display_spectrum;
// bin low bounds, each bin consists of [f_b, f_b+1)
std::vector<float> display_bins;
// duplicate info for faster processing = delta_f in each bin
std::vector<float> bin_sizes;
// xy position of that frequency bin bound on the spiral
std::vector<std::complex<float>> spiral_positions;
// same info, but r.exp(angle)
// avoid all the sqrt, cos and sin at each redraw
struct Radius_Angle {float r, a;};
std::vector<Radius_Angle> spiral_r_a;
int min_midi_note, max_midi_note, visual_fading;
float gain{1.f}, half;
float x(float x) const
{
return half + x * half;
}
float y(float y) const
{
return half - y * half;
}
void compute_frequencies();
// // Callback when the power spectrum is available at the prescribed frequencies
// // The ID is that of the caller, setting the color of the display
void power_handler(int ID,
const std::vector<float>& reassigned_frequencies,
const std::vector<float>& power_spectrum);
};
}

View file

@ -22,6 +22,7 @@ avnd_score_plugin_add(
Amuencha/AmuenchaModel.cpp
Amuencha/AmuenchaUi.hpp
Amuencha/SpiralDisplay.hpp
Amuencha/SpiralDisplay.cpp
TARGET amuencha
MAIN_CLASS Analyser
NAMESPACE Amuencha